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Abstract
The coherent states of the Morse potential that have been obtained earlier
from supersymmetric quantum mechanics, are shown to be connected with the
representations of the affine group of the real line and some of its extensions.
This relation is similar to the one between the Heisenberg–Weyl group and
the coherent states of the harmonic oscillator. The states that minimize the
uncertainty product of the generators of the affine Lie algebra are shown to
contain all the coherent states of the Morse oscillator plus the intelligent states of
the Morse Hamiltonians with different shape parameter s. The representations
of the central extension of the affine group denoted by G0 and its further
extension G̃0 will be shown to define the phase space relevant to the problem by
choosing an appropriate orbit of the coadjoint representation of G̃0. This allows
one to construct a generalized Wigner function on this phase space, which is
again essentially in the same relation with the affine group, as the ordinary
Wigner function with the Heisenberg–Weyl group.

PACS numbers: 0220S, 0365F, 3420C, 4520

1. Introduction

The Morse Hamiltonian is frequently used in molecular physics, because it is a more realistic
model for the description of the vibrations of a diatomic molecule than the harmonic oscillator
(HO). In a previous paper [1] the coherent states of this potential were constructed using the
technique of supersymmetric quantum mechanics. The aim of the present paper is to show
the group theoretical background of this construction and to elucidate the relation between the
Morse Hamiltonian and the affine group of the real line and some of its extensions [2]. For the
sake of completeness in section 2 we summarize the formalism used in the construction of the
eigenstates as well as the coherent states of the Morse Hamiltonian based on supersymmetric
quantum mechanics. In section 3 we describe the algebras and groups relevant to the problem,
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and show that the operators of an irreducible representation of the affine group generate the
coherent states from the ground state. A non-trivial extension of the affine group will be
shown to have a connection with the minimal (intelligent) states associated with the problem.
In section 4 we show the construction of the affine Wigner function based on group theory,
and its connection with the ordinary Wigner function.

2. Energy eigenstates and coherent states of the Morse potential

The Morse Hamiltonian to be used here has the following dimensionless form:

H(s) = P 2 +
(
s + 1

2 − exp(−X)
)2
. (1)

The dimensionless coordinate and momentum obey the usual commutation relation: [X,P ] =
i, and on the space of functions ψ(x) ∈ L2(−∞,∞, dx) X is represented by multiplication by
x and P by −i∂x . The bound spectrum of this Hamiltonian can be obtained by the technique
of supersymmetric quantum mechanics [3,4], a procedure which is based on the factorization
of H in terms of generalized ladder operators A(s) and A†(s):

H(s) = A†(s)A(s) + E0(s) (2)

where

A(s) = s − exp(−X) + iP

A†(s) = s − exp(−X) − iP
(3)

and E0(s) = s + 1
4 . A(s) and A†(s) satisfy the following commutation relations:

[A(s), A(s)] = 0[
A†(s), A†(s)

] = 0[
A(s), A†(s)

] = 2sI − (
A(s) + A†(s)

)
.

(4)

If s > 0, then there exists a normalizable ground state |�0(s)〉 with energy E0(s), obeying:

A(s) |�0(s)〉 = 0 (5)

i.e. A(s) annihilates the ground state.
The eigenstates can be determined by using the following facts: (a) the supersymmetric

partner Hamiltonian,Hp(s) = A(s)A†(s)+E0(s) has the same bound energy eigenvalues asH ,
except for the ground state, and (b) apart from a shift of the parameter s, Hp has the same form
as the original H (this is the shape invariance condition) [3,4]: Hp(s) = H(f (s)) +R(f (s)),
with f (s) = s − 1 and R(s) = 2(s + 1). Using these properties together with equation (5) one
can determine the energy eigenstates, as well as the eigenvalues of H resulting in

|�n(s)〉 ∝ A†(s) · · ·A†(s − n + 1)|�0(s − n)〉

En(s) = E0(s) +
n∑

k=1

R(s − k).
(6)

It can be shown that the number of normalizable energy eigenstates is the largest integer that
is less than s + 1.
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In [1] the coherent states of the Morse potential, labelled by a complex number β (|β| < 1)
have been constructed from the ground state in the following way:

|β〉 = D(β) |�0(s)〉

=
{
(1 − β)

(1 − β∗)
(
1 − |β|2)}s

{
I +

∞∑
n=1

βn

n!
A†(s + n − 1) · · ·A†(s)

}
|�0(s)〉. (7)

We note here that the definition ofD(β) and the phase of the Morse coherent state above differs
from the original phase convention used in [1]. According to [1] the coherent state |β〉 would
be written as |β〉 = e−iϕD(β) |�0(s)〉, with e−iϕ = (|1 − β| /(1 − β))2s . By omitting this
irrelevant phase factor the formulae of this paper will have a more simple form. The unitary
operator D(β) ≡ D(̃x, p̃) generating the coherent state has the alternative exponential form:

D(̃x, p̃) = exp(−ip̃I ) exp

(
x̃

2

(
A†(s) − A(s)

))
exp

(
i

2s
p̃
(
A(s) + A†(s)

))
(8)

where

x̃ := ln

(
Re

1 + β

1 − β

)
p̃ := s

Im[(1 + β)/(1 − β)]

Re[(1 + β)/(1 − β)]
. (9)

The parameters (̃x, p̃) are connected with the expectation values of coordinate and momentum
in the state |β〉 as x̃ = 〈X〉 − 〈X〉0 and p̃ = 〈P 〉, where 〈X〉0 is the mean value of x in the
ground state. In [1] it has been shown that these states form an overcomplete set for s > 1

2

with respect to the measure δβ = (2s − 1)/
(
1 − |β|2)2

d Re β d Im β and that they have the
following form in the coordinate representation:

ϕβ(y) =
(
1 − |β|2)s√

�(2s)|1 − β|2s y
s exp

(
−y

2

1 + β

1 − β

)
(10)

where y = 2e−x . We note that this function has already been found in [5] in another way.

3. The role of the affine group and its extension

In this section we are going to show that the affine group of the real line plays a similar role
for the Morse potential as does the Heisenberg–Weyl group for the harmonic oscillator. Let us
first briefly clarify the HO case. The operators a, a† and I used in the theory of the HO form
a Lie algebra, usually known as the Heisenberg–Weyl algebra, and the corresponding group
is the Heisenberg–Weyl group. This is not a symmetry group of the HO, because the group
transformations, in general do not commute with the Hamiltonian. The relevance of this algebra
for the HO lies in the following facts: (a) the specific set of generators of the algebra, namely
a and a† are spectrum-generating (ladder) operators, in the sense that they connect eigenstates
belonging to neighbouring eigenvalues, and (b) the elements of the irreducible representation
of the corresponding group, known as the displacement operators of the HO [6], create the
coherent states from the ground state.

We now turn to the case of the Morse potential, and the affine group. The operators in
which the Hamiltonian (1) is quadratic are P and Y = 2 exp(−X). Their differential form in
the y representation is P = iy∂y and Y = y, and they obey the commutation relation:

[P, Y ] = iY. (11)

Equation (11) shows that the operators Y and P form a closed Lie algebra. It is known [7],
and will be demonstrated briefly below, that this is just the algebra corresponding to the affine
group of the real line.
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The ladder operators in equation (3) are linear combinations of Y and P plus the identity
operator, I . Therefore, we need to extend the algebra spanned by Y and P with the identity
operator, which commutes with all the other generators. This standard procedure is known as
a central extension in group theory. The operators P , Y and I , or alternatively, A, A†, I , form
the basis of an extended Lie algebra, to be denoted here by G0. The group G0 corresponding
to this algebra has been investigated in [2] for the purpose of signal processing.

In what follows we shall need to use an even larger group, denoted by G̃0 which is a
further extension of G0 [2]. We will show in subsection 3.2 that G̃0 is closely connected to the
minimal states of the strong uncertainty relation of the operators Y and P . Now we are going
to characterize these groups and the corresponding algebras in some more detail.

(a) The affine group. The elements of the two-parameter affine group (a, b), a > 0, b ∈ R

act on the points x of the real line as (a, b)x = ax +b, and satisfy the group multiplication
property: (a, b)(a′, b′) = (aa′, ab′ + b).

(b) The group G0. This group is a direct product of the affine group and the real line R and it
can be realized in the following way. G0 has elements (a, b, c), a > 0, b, c ∈ R with the
multiplication rule (a, b, c)(a′, b′, c′) = (aa′, ab′ + b, c + c′).

(c) The group G̃0. This four-parameter group has the following composition rule:
(a, b, c, d)(a′, b′, c′, d ′) = (aa′, ab′+b, c+c′+ρd ′ ln a, d+d ′), where a > 0, b, c, d ∈ R,
and ρ is a fixed real number.

The simplest faithful representation of the group G̃0 is given by the four-dimensional
matrices

g(a, b, c, d) =


a b 0 0

0 1 0 0

0 c 1 ρ ln a

0 d 0 1

 (12)

obeying the required multiplication rule. Disregarding the last row and column, as well as
setting d = 0 one gets back the group G0. Disregarding the last two rows and columns,
or alternatively setting c = d = 0, one arrives at the affine group. The group G0

can also be recovered as a quotient of G̃0 by the subgroup T consisting of the elements
(1, 0, c, 0), c ∈ R. The elements of the quotient G̃0/T are the equivalence classes [a, b, d] =
{(a, b, c, d),∀c ∈ R}. As can be seen from the composition law of G̃0 the set of elements
[a, b, d] transforms as G0, and is thus isomorphic to it. The group G̃0 is, in fact, constructed
as the extension of the group G0 by the group T [2].

A representation of the generators of the Lie algebra G̃0 corresponding to the group G̃0

is obtained by taking the derivatives of g(a, b, c, d) at the unit element. We are going to use
here the self-adjoint generators as

Xa = i
∂g

∂a

∣∣∣∣
a=1,b=c=d=0

(13)

and similarly for Xb, Xc and Xd . Calculating these derivatives of the matrix above, and
evaluating their commutators, one obtains

[Xa,Xb] = iXb [Xa,Xd ] = iρXc [Xb,Xd ] = 0 (14)

while Xc commutes with all the others. Setting the correspondence:

Xa ⇒ P Xb ⇒ Y Xc ⇒ I Xd ⇒ ρ ln Y = Z = −ρX + (ln 2)ρI (15)

one arrives at the following commutation relations:
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(a)

[Xa,Xb] = iXb ⇒ [P, Y ] = iY (16)

(b)

[Xk,Xc] = 0 ⇒ [Xk, I ] = 0 k = a, b, c (17)

(c)

[Xa,Xd ] = iρXc ⇒ [P,Z] = iρI (18)

[Xb,Xd ] = 0 ⇒ [Y,Z] = 0. (19)

Considering only (a), one sees that the commutation relation (11) is really that of the algebra
of the affine group, having only these two generators.

(a) and (b) together yield the Lie algebra of the group G0. In view of equation (4) the
ladder operators for the Morse potential can be considered as elements of the extended affine
Lie algebra, G0, and according to equation (6) the eigenstates are generated by the consecutive
applications of A†. We note that this Lie algebra corresponds to case III in the Bianchi
classification of the three-dimensional Lie algebras [8].

We turn now to the unitary irreducible representations of the above groups on the space
of functions ψ ∈ L2(0,∞; dy/y) with inner product

(ψ,ψ ′) =
∫ ∞

0
ψ∗(y)ψ ′(y)

dy

y
. (20)

The widest group G̃0 can be represented unitarily and irreducibly on the function space:

U(a, b, c, d)ψ(y) = exp(−i(by + c + ρd ln y)) ψ(ay) (a, b, c, d) ∈ G̃0 (21)

where ρ is a real parameter. Keeping in mind that G0 and the affine group are subgroups of G̃0,
one sees that the unitary irreducible representations of G0 and the affine group can be obtained
by setting d = 0 and c = d = 0, respectively. Alternatively, the whole transformation (21)
yields a projective representation for the group G̃0/T consisting of elements [a, b, d].

The generators of the representation (21) of G̃0 are:

Pψ(y) ≡ i
∂Uψ(y)

∂a
= iy∂yψ(y) (22)

Yψ(y) ≡ i
∂Uψ(y)

∂b
= yψ(y) (23)

Iψ(y) ≡ i
∂Uψ(y)

∂c
= ψ(y) (24)

Zψ(y) ≡ i
∂Uψ(y)

∂d
= ρ ln y ψ(y) (25)

where the derivatives were taken at a = 1, b = c = d = 0.
It will be shown in the appendix that the exponentiation of the Lie algebra elements

X = uP + vY + wI + tZ, yields the following relation between the parameters u, v,w, t ∈ R

and the group parameters a, b, c, d:

exp{−i(uP + vY + wI + tZ)} = U

(
a = eu, b = v

u
(eu − 1), c = w +

ρ

2
tu, d = t

)
. (26)
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3.1. The affine group and the Morse coherent states

Let us use the following notation:

U(a, b) = U(a, b, 0, 0) (27)

where (a, b) is an element of the affine group. This defines an unitary irreducible representation
for the affine group. Since

A†(s) − A(s) = −2iP A†(s) + A(s) = 2sI − Y (28)

the unitary operator D(̃x, p̃) given by equation (8) can be written as

D(̃x, p̃) = exp(−ip̃I ) exp(−ĩxP ) exp

(
i

2s
p̃(2sI − Y )

)
(29)

or, since I commutes with P and Y:

D(̃x, p̃) = exp(−ĩxP ) exp

(
− i

2s
p̃Y

)
. (30)

This operator acts on wavefunctions that are defined on the half-line and are square integrable
for the measure dy/y. According to (26) and (27) we have

exp(−ĩxP ) exp

(
− i

2s
p̃Y

)
= U(ex̃ , 0)

(
1,

p̃

2s

)
. (31)

Using

U(a, b) = U(1, b)U(a, 0) = U(a, 0)U

(
1,

b

a

)
(32)

we obtain that the coherent states are generated from the ground state as

|̃x, p̃〉 = D(̃x, p̃)�0(y) = U(a, b)�0(y) (33)

where the parameters a and b of the affine group are related to x̃ and p̃ according to

a = exp(̃x) b = p̃ exp(̃x)

2s
. (34)

3.2. Minimal states and the group G̃0

The coherent states for the Morse potential, obtained in [1] in a different way will be shown
here to be the states minimizing the strong uncertainty relation [9, 10] with respect of the
non-commuting operators P and Y. The derivation of this relation will now be recalled. Given
two Hermitian operators B1, B2, the norm of the vector (B1 + iλB2)0 is non-negative for any
complex number λ:〈

0, (B1 − iλ∗B2)(B1 + iλB2)0
〉
� 0. (35)

Using the notation 〈BiBj 〉 ≡ 〈0,BiBj0〉 and setting

λ =i
〈B2B1〉
〈B2

2 〉
we obtain by linearity and hermiticity:

〈B2
1 〉〈B2

2 〉 � |〈B1B2〉|2 = 1
4

(〈B1B2 + B2B1〉2 − 〈[B1, B2]〉2
)
. (36)
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The latter equality is obtained by splitting 〈B1B2〉 into its symmetric (real) and antisymmetric
(imaginary) parts. Applying this result to

B1 = P − p0 B2 = Y − y0 (37)

with 〈P 〉 ≡ p0 and 〈Y 〉 ≡ y0 leads to the strong uncertainty relation:

σyyσpp − σ 2
py � 〈Y 〉2/4 (38)

where

σyy = 〈(Y − y0)
2〉 σpp = 〈(P − p0)

2〉
σpy = 〈PY + YP 〉

2
− 〈Y 〉〈P 〉.

(39)

According to relations (35) and (37), the minimal uncertainty states for which equation (38)
turns into equality obey the equation

[(P − p0) + iλ(Y − y0)]|0〉 = 0 (40)

where p0 and y0 are real and λ is a (generally) complex parameter. In the space of functions
L2(0,∞, dy/y) one has to solve the corresponding differential equation:[

iy
∂

∂y
− p0 + iλ(y − y0)

]
0(y) = 0. (41)

The solution is

0(y; λ, p0, y0, φ) = Ce−iφyλy0−ip0 e−λy (42)

where C = (2 Re λ)(y0 Re λ)/
√
�(y02 Re λ) is fixed by the normalization.

The special case of the Morse coherent states ϕβ(y), defined in equation (10), is obtained
for

p0 = y0 Im λ φ = 0.

The relation of parameters β, and s to λ and y0 is written as

β = 2λ − 1

2λ + 1
s = y0 Re λ. (43)

The normalizability condition, Re λ > 0 implies |β| < 1, while the condition Re λ > 1/2y0,
required for completeness of the set of coherent states, leads to s > 1

2 . Moreover, the Morse
coherent states can be obtained by applying the group element U(a, b) to the ground state with
the appropriate shape parameter.

On the other hand, the states for which σpy = 0 are exactly those for which λ is set to be
real in equation (40) (see [9, 10]). These are the states which minimize the more customary
and weaker form of the uncertainty relation: 6P 6Y � 〈Y 〉/2. In the family of Morse
coherent states, only those with Im λ = 0 and hence p0 = 0 are minimal in the usual sense.
They coincide with the minimal states introduced by Klauder [11] and proved useful as basic
analysing wavelets in signal theory [12].

Now let us turn our attention to the problem of how the whole set of minimal states can
be generated from the ground state. Considering the representation of G̃0 in equation (21) an
easy calculation shows that the group elements U(a, b, c, d) generate the minimal states with
parameter s which satisfy the constraint y0 Re λ = s:

U(a, b, c, d)�0(y, s) = 0

(
y; λ = a

2
+ ib, p0 = ρd +

2sb

a
, y0 = 2s

a
, φ = c

)
(a, b, c, d) ∈ G̃0.

(44)
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Using the analogy with the harmonic oscillator case the above states minimizing the uncertainty
relation of (38) and including the coherent states can be regarded as the intelligent states of
the Morse potential characterized by the shape parameter s. It is obvious that by changing the
shape parameter one obtains disjoint sets of intelligent states which exhaust the entire set of
minimal states of the affine algebra.

4. Affine Wigner function

The introduction of Wigner functions in quantum mechanical problems leads to a description
in phase space that is equivalent to the operator description, but that is more pertinent in
some respects. In particular, the usual coherent and squeezed coherent states of the HO are
represented by positive functions and their squeezing is clearly exhibited in the (x, p) phase
space.

In the present case, the usual Wigner function is not so well adapted. It is known that the
coherent states of (10) will not be represented by a positive Wigner function, (for ordinary
Wigner functions of Morse eigenstates, see [13, 14]). More basically, the usual Wigner
function is constructed on the Heisenberg group and has a larger covariance by the metaplectic
group [15]. As has been shown above, it is the group G̃0 which plays a fundamental role in
the Morse problem, and hence it seems more desirable to use a phase space representation
constructed on this latter group. This will be the affine Wigner function. We will now recall
its construction and exhibit some of its properties that are relevant to the present problem.

The natural phase space is spanned here by coordinates p and y. It can be defined as
an orbit of group G̃0 under its coadjoint representation determined as follows. Consider the
adjoint representation of G̃0 defined by

ad(a, b, c, d)X = U(a, b, c, d)XU−1(a, b, c, d) (45)

where X = xPP + xYY + xI I + xZZ denote the elements of the corresponding Lie algebra.
Using the commutation relations (16)–(19) one obtains

ad(a, b, c, d)


xP

xY

xI

xZ

 =


1 −b −ρd 0

0 a 0 0

0 0 1 0

0 0 ρ ln a 1




xP

xY

xI

xZ

. (46)

The coadjoint representation [16,17] acting on the dual space element
(
p, y, ι, z

)�
is given

by

coad(a, b, c, d)


p

y

ι

z

 =


1 a−1b ρd 0

0 a−1 0 0

0 0 1 0

0 0 −ρ ln a 1




p

y

ι

z

. (47)

This representation has four different types of orbits in the dual space of G̃0:

O0(η1, η2) = {(η1, 0, 0, η2)}
OH(ξ) = {(p, 0, ξ, z) , p, z ∈ R}
O±(ξ1, ξ2) = {(p,±y, ξ1, ρξ1 ln y − ξ2) , y > 0, p ∈ R}

(48)

where the real parameters η1, η2, ξ, ξ1 and ξ2 are constants characterizing the individual orbits.
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Theoretically the above classes of orbits serve four different possibilities to define phase
space but not each of them has physical relevance in the present problem. The first class O0

is singular, because it includes only one-point orbits which are invariant under the action of
group G̃0 in the coadjoint representation space. It is obvious that these zero-dimensional orbits
do not meet the requirements of phase space. The orbits of the second one, OH give the usual
phase space spanned by coordinates (p, x), because the fourth parameter, z originates from
the operator Z = ρ ln Y = −ρX + (ln 2)ρI , which is essentially identical to X. Additionally,
on these orbits the coadjoint representation above acts as the Heisenberg–Weyl group. This
is the consequence of the fact that the subgroup with elements U(u, v = 0, w, t) is identical
to the Heisenberg–Weyl group. We have shown, however, that the operators P and Y are the
relevant operators in the Morse problem and it is obvious that by choosing the class OH , the
affine subgroup of G̃0 would be lost. Hence it is seen that the appropriate choice of the phase
space is an orbit from the class O+ or O− parametrized by (p, y). Among them only the class
O+ with positive-valued coordinate y is well adapted to the current problem. The action of
the group G̃0 on the phase space corresponding to the orbit O+(ξ1, ξ2) can be written as(

p′

y ′

)
=
(
p + a−1by + ρξ1d

a−1y

)
. (49)

This gives the action of G̃0 on the phase space parametrized by coordinates (p, y) and
consequently on any function F(p, y):

(a, b, c, d) : F(p, y) −→ F ′(p, y) ≡ F(p − by − ρξ1d, ay). (50)

In the following, we will set ξ1 = 1 as this does not restrict generality.
Now the affine Wigner function is defined as a real quadratic functional of the wavefunction

written as

W(p, y;ψ) =
∫

R+×R+
K(p, y; y1, y2)ψ(y1)ψ

∗(y2) dy1 dy2 (51)

where the kernel K is such that

K∗(p, y; y1, y2) = K(p, y; y2, y1). (52)

Now, the correspondence ψ(y) → W(p, y;ψ) has to fulfil the following requirements.

1. Covariance by the group G̃0. When the wavefunction ψ(y) is transformed by the
representation U(a, b, c, d) according to (21), the corresponding phase space function
W(p, y;ψ) undergoes a pointlike transformation of the form (50). In other words, the
following diagram is commutative:

ψ(y) −→ U(a, b, c, d)ψ(y) = exp(−i(by + c + ρd ln y)) ψ(ay)

↓ ↓
W(p, y) −→ W ′(p, y) ≡ W(p − by − ρd, ay).

(53)

Writing explicitly this condition with the functional W(p, y;ψ) defined in (51) leads
necessarily to a phase space function of the form:

W(p, y;ψ) =
∫ ∞

−∞
eivp ψ

(
yvev/2

2 sinh(v/2)

)
ψ∗
(

yve−v/2

2 sinh(v/2)

)
µ(v) dv (54)

where the function µ(v) is such that

µ∗(v) = µ(−v) (55)

and otherwise arbitrary.



3148 B Molnár et al

2. Unitarity. This is also called Moyal property in the case of the usual Wigner function.
Here it is written as∫

R×R+
W(p, y;ψ1)W(p, y;ψ2) dp (dy/y) = |(ψ1, ψ2)|2 (56)

with the scalar product of wavefunctions being given by equation (20). The constraint
(56) leads to the determination of µ(v): µ(v) = 1

2π .

Finally, the affine Wigner function is given by

W(p, y;ψ) = 1

2π

∫ ∞

−∞
eivp ψ

(
yvev/2

2 sinh(v/2)

)
ψ∗
(

yve−v/2

2 sinh(v/2)

)
dv. (57)

This function is not positive everywhere for an arbitrary state, and is thus only a pseudo-
distribution. However, it provides a phase space interpretation for the properties relative to the
minimal states and for the action of the group G̃0.

Due to the non-commutativity of the affine algebra, there is no state having a phase space
representation W(p, y) exactly localized in one point. The optimal concentration of the affine
Wigner function will occur for the minimal states. Consider first the Morse ground state, which
is identical to the coherent state with β = 0:

�0(y) = 1√
�(2s)

yse−(y/2). (58)

Substitution into expression (57) gives

W(p, y;�0(s)) = y2s

2π�(2s)

∫ ∞

−∞
eivp

(
v

2 sinh(v/2)

)2s

e−y(v/2) coth(v/2) dv

≡ W0(p, y; s). (59)

This expression can be shown to be positive, as the Fourier transform of a function of positive
type [18], and it is localized around the point p = 0, y = 2s. The use of the covariance
property (53) shows that the phase space representation of a general minimal state, as defined
by equation (44), is obtained from W0 by a point transformation and is thus positive as well.
In particular, the affine Wigner representation of any Morse coherent state (10) written as

ϕβ(y) = U(a, b)�0(y) = as√
�(2s)

ys e−(a/2+ib)y a/2 + ib = 1

2

1 + β

1 − β
(60)

is equal to

W(p, y;ϕβ) = W0(p − by, ay; s). (61)

Thus, for a given s, there is a Morse coherent state attached to any point of the phase space
and the extension of its (positive) affine Wigner function depends only on that point.

More generally, any intelligent state (42) is represented by

W (p, y;0(λ, p0, y0, φ)) = W0(p − p0 − (y − y0) Im λ, 2 Re λ y; y0 Re λ). (62)

The parameter λ, which appeared in equation (40), can thus be interpreted as a factor
determining the shape of the function W(p, y). In the limit λ = 0, the functions 0(y)

collapse into eigenstates of the operator P :

ψP (y) = y−ip0 (63)
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and sharp localization is obtained in phase space:

W(p, y;ψP ) = δ(p − p0). (64)

The group G̃0 has been seen to perform point transformations in the affine Wigner function.
In fact, it is the largest group with this property which can be represented unitarily on the
wavefunction. It thus plays a role analogous as does the metaplectic group [15] in the harmonic
oscillator case.

To make a comparison of the present phase space representation (57) with what would be
obtained from Wigner’s, it is useful to go back to the original variable x and to define

ψ̃(x) ≡ ψ(2e−x) W̃ (p, x; ψ̃) ≡ W(p, 2e−x;ψ). (65)

Expression (57) leads to

W̃ (p, x; ψ̃) =
∫ ∞

−∞
eivpψ̃

(
x − v

2
− ln

v

2 sinh(v/2)

)
ψ̃∗
(
x +

v

2
− ln

v

2 sinh(v/2)

)
dv. (66)

It can be seen that, in the vicinity of v = 0, the argument ofψ (respectivelyψ∗) is approximated
by x− v/2 (respectively x + v/2). Hence the function W̃ (p, x; ψ̃) will be close to the original
Wigner function only for states ψ(x) which have support over a narrow interval. In particular,
the usual Wigner function cannot localize exactly states of the form (63).

5. Conclusions and final remarks

In this work we have presented the role of the affine group and its extensions G0 and G̃0 in
the quantum mechanics of the Morse potential. We have shown that the essential operators of
the Morse problem, namely the momentum P and the exponentially scaled position Y, form
the Lie algebra of the affine group of the real line. Moreover, we have proven that the algebra
spanned by the spectrum-generating SUSY ladder operators and the identity is isomorphic to
the Lie algebra of the centrally extended affine group G0. As a consequence of these facts, we
have established a connection between the unitary irreducible representations of the groups
above and certain sets of states relevant to the Morse Hamiltonian.

First, we have shown that the overcomplete set of the Morse coherent states constructed
in [1] can also be generated from the ground state by the elements of the unitary irreducible
representation of the affine group on the Hilbert space. Therefore, these states are the coherent
states of the affine group in Perelomov’s sense [19,20] too. Furthermore, we have investigated
the strong uncertainty relation related to the affine algebra generators P and Y and the states
which minimize this inequality. It has turned out that the set of these minimal states can be
decomposed into disjoint subsets of intelligent states belonging to different Morse potentials
characterized by different shape parameters s. We would like to note here that in the case of
the harmonic oscillator the set of intelligent states is identical to the whole set of minimal states
of the uncertainty relation. This follows from the fact that the frequency playing the shape
parameter for the harmonic oscillator [3] does not change by constructing the SUSY partner
Hamiltonian. This is in contrast with the case of Morse partner Hamiltonians where the shape
parameter s is shifted. We have also shown that each of these sets of intelligent states are
generated from the corresponding ground state with the appropriate shape parameter s by the
elements of the unitary irreducible representation of group G̃0. Due to these arguments this
latter group plays the analogous role for the Morse potential as the metaplectic group does for
the oscillator.

In view of these observations above it seemed plausible to introduce the phase space for the
Morse potential through the group G̃0. Following the method of Kirillov we have considered
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the coadjoint orbits of G̃0 and have given the phase space as a two-dimensional manifold with
coordinates p and y. Putting natural requirements on the functions on the phase space we have
arrived at a phase space distribution function obeying the covariance property under G̃0 and
the Moyal property. This phase space distribution function called the affine Wigner function
is the same that as originally introduced in the context of signal processing theory [2].

Acknowledgments

This work was initiated while two of the authors (MGB and JB) were participating in the
workshop: Optical Systems and their Wigner functions at the Centro Internacional de Ciencias,
Cuernavaca, Mexico. We are grateful for financial support of that institute and especially to
K B Wolf for his hospitality, and for useful discussions. Two of the authors (BM and MGB) are
also grateful to L Fehér for clarifying remarks. The work has been supported by the National
Research Foundation of Hungary (OTKA) under contracts nos T22281 and T32920.

Appendix. Baker–Campbell–Hausdorff-type relation for G̃0

In order to obtain the Baker–Campbell–Hausdorff-type relation for G̃0 given in equation (26)
let us recall the four-dimensional matrix representation given by equation (12). We will prove
that the identifications of parameters

a = eu b = v

u
(eu − 1) c = w +

ρ

2
ut d = t (A1)

yield

exp{−i(uXa + vXb + wXc + tXd)} = g(a, b, c, d) (a, b, c, d) ∈ G̃0. (A2)

The Lie algebra generators Xa,Xb,Xc and Xd are defined by equation (13) and the parameters
u, v,w and t are arbitrary real numbers.

To prove the identity above let us first set d = 0 and calculate the left-hand side of
equation (A2). A straightforward calculation gives

exp{−i(uXa + vXb + wXc)} =


eu v

eu − 1

u
0 0

0 1 0 0

0 w 1 ρu

0 0 0 1

 = g

(
eu, v

eu − 1

u
,w, 0

)
. (A3)

In the case of arbitrary d we can use the commutators (16)–(19). With the notation B ≡ −itXd

andC ≡ −i(uXa+vXb+wXc)one has [B,C] = −iutρXd and [[B,C], B] = [[B,C], C] = 0.
Then e{B+C} = e− 1

2 [B,C]eAeB and one can write

exp{−i(uXa + vXb + wXc + tXd)} = exp(−itXd) exp
{−i

(
uXa + vXb +

(
w + 1

2utρ
)
Xc

)}
.

(A4)

Using equation (A3) and (A4):

exp{−i(uXa + vXb + wXc + tXd)} = g(1, 0, 0, d)g(a, b, c, 0) (A5)

where a = eu, b = v
u
(eu − 1), c = w + ρ

2ut and d = t . Finally, taking into account that
(a, b, c, d) = (1, 0, 0, d)(a, b, c, 0) one arrives at equation (A2).
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[15] Garcia-Bullé M, Lassener W and Wolf K B 1986 J. Math. Phys. 27 29
[16] Kirillov A 1976 Elements of the Theory of Representations (Berlin: Springer)
[17] Vilenkin N J and Klimyk A U 1991 Representation of Lie Groups and Special Functions vol 1 (Dordrecht:

Kluwer)
[18] Flandrin P 1998 J. Math. Phys. 39 4016
[19] Perelomov A M 1986 Generalized Coherent States and Their Applications (Berlin: Springer)
[20] Ali T S, Antoine J P and Gazeau J P 2000 Coherent States, Wavelets and their Generalizations (Berlin: Springer)


